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The complete knowledge of Laplacian eigenvalues and eigenvectors of complex networks plays an outstand-
ing role in understanding various dynamical processes running on them; however, determining analytically
Laplacian eigenvalues and eigenvectors is a theoretical challenge. In this paper, we study the Laplacian spectra
and their corresponding eigenvectors of a class of deterministically growing treelike networks. The two inter-
esting quantities are determined through the recurrence relations derived from the structure of the networks.
Beginning from the rigorous relations one can obtain the complete eigenvalues and eigenvectors for the
networks of arbitrary size. The analytical method opens the way to analytically compute the eigenvalues and
eigenvectors of some other deterministic networks, making it possible to accurately calculate their spectral
characteristics.
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I. INTRODUCTION

As an interdisciplinary subject, complex networks have
received tremendous recent interest from the scientific com-
munity �1–5� because of their flexibility and generality in the
description of natural and manmade systems. A central issue
in the study of complex networks is to understand how their
dynamical behaviors are influenced by the underlying topo-
logical structure �3–5�. In various dynamical processes, the
effect of network structure is encoded in the eigenvalues
�spectra� and their corresponding eigenvectors of its Laplac-
ian matrix. For instance, the synchronizability of a network
is determined by the ratio of the maximum eigenvalue to the
smallest nonzero one of its Laplacian matrix �6,7�. Again, for
example, for continuous-time quantum walks �8� in a net-
work, the quantum transition probabilities �9� between two
nodes are closely related to the eigenvalues and orthonormal-
ized eigenvectors of its Laplacian matrix, which also deter-
mine the resistance between a pair of nodes and the average
resistance of all couples of nodes in a resistance network
�10,11�. Thus, the complete �exact� knowledge of Laplacian
spectra and eigenvectors is very important for understanding
the network dynamics.

Recently, a lot of activities have been devoted to the study
of the spectra of complex networks �12–15�, providing useful
insight into the topological properties of and dynamical pro-
cesses on networks. However, most previous related studies
have been confined to approximate or numerical methods,
the latter of which is prohibitively difficult for large net-
works because of the limit of time and memory. Moreover,
notwithstanding its significance, relevant research on eigen-
vectors of Laplacian matrix of complex networks is much
less.

In the present paper, we investigate the Laplacian eigen-
values and eigenvectors of a class of deterministic treelike
networks, which are constructed iteratively �16�. By applying
the technique of graph theory and an algebraic iterative pro-
cedure, we derive recursive relations for the Laplacian eigen-
values and eigenvectors of the networks. The obtained recur-
rence relations allow one to determine explicitly the full
Laplacian eigenvalues and eigenvectors of the considered
networks of arbitrary iterations from those of its initial struc-
ture.

II. MODEL FOR THE GROWING TREES

Here we introduce a model for a class of deterministically
growing trees �networks� defined in an iterative way �16�,
which has attracted an amount of attention �5,17�. We inves-
tigate this model because of its intrinsic interest and its de-
terministic construction, which allows one to study analyti-
cally its Laplacian spectra and their corresponding
eigenvectors.

The deterministically growing trees, denoted by Ut �t
�0� after t iterations, are constructed as follows. For t=0,
U0 is an edge connecting two nodes. For t�1, Ut is obtained
from Ut−1 by attaching m �m is a positive integer� new nodes
to each node in Ut−1. Figure 1 illustrates the construction
process of a particular network for the case of m=2 for the
first four generations.

According to the network construction, one can see that at
each step ti �ti�1� the number of newly introduced nodes is
L�ti�=2m�m+1�ti−1. From this result, we can easily compute
the network order �i.e., the total number of nodes� Nt at step
t,

Nt = �
ti=0

t

L�ti� = 2�m + 1�t. �1�

The considered networks have a degree distribution of
exponential form. Their cumulative degree distribution
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Pcum�k�, defined to be the probability that the degree is
greater than or equal to k, decays exponentially with k as
Pcum�k�= �m+1�−�k−1�/m �16�. Their average path length, de-
fined as the mean of shortest distance between all pairs of
nodes, increases logarithmically with network order �17�.
Thus, the networks exhibit small-world behavior �18�.

Notice that the particular case of m=1 is in fact a deter-
ministic version of the uniform recursive tree �URT� �19�,
which is a principal model �20,21� of random graphs �22�. As
one of the most widely studied model, the URT is con-
structed as follows �19�: start with a single node, at each time
step, we attach a new node to an existing node selected at
random. It has found many important applications in various
areas. For example, it has been suggested as models for the
spread of epidemics �23�, the family trees of preserved cop-
ies of ancient or medieval texts �24�, chain letter, and pyra-
mid schemes �25�, to name but a few. The m=1 case of the
networks studied here has similar structural properties as the
URT; thus, we call the considered networks expanded deter-
ministic uniform recursive trees �EDURTs�, which could
shed light in better understanding the nature of the URT.
After introducing the EDURTs, in what follows we will
study the eigenvalues and their corresponding eigenvectors
of the Laplacian matrices of the EDURTs.

III. LAPLACIAN SPECTRA AND THEIR
CORRESPONDING EIGENVECTORS

Generally, for an arbitrary graph, it is difficult to deter-
mine all eigenvalues and eigenvectors of its Laplacian ma-
trix, but below we will show that for Ut one can settle this
problem.

A. Eigenvalues

As known in Eq. �1�, there are 2�m+1�t vertices in Ut. We
denote by Vt the vertex set of Ut, i.e., Vt
= �v1 ,v2 , . . . ,v2�m + 1�t�. Let At= �aij� be the adjacency matrix
of network Ut, where aij =aji=1 if nodes i and j are con-
nected, aij =aji=0 otherwise, then the degree of vertex vi is
defined as dvi

=� j�Vt
aij. Let Dt=diag�dv1

,dv2
, . . . ,dv2�m + 1�t�

represent the diagonal degree matrix of Ut, then the Laplac-
ian matrix of Ut is defined by Lt=Dt−At.

We first study the Laplacian spectra of Ut, while we leave
the eigenvectors to the next subsection. By construction, it is
easy to find that the adjacency matrix At and diagonal degree
matrix Dt satisfy the following relations:

At =�
At−1 I I ¯ I

I 0 0 ¯ 0

I 0 0 ¯ 0

] ] ] ]

I 0 0 ¯ 0
	

�m+1���m+1�

�2�

and

Dt =�
Dt−1 + mI 0 0 ¯ 0

0 I 0 ¯ 0

0 0 I ¯ 0

] ] ] ]

0 0 0 ¯ I
	

�m+1���m+1�

, �3�

where each block is a 2�m+1�t−1�2�m+1�t−1 matrix and I is
the identity matrix. Thus, according to the above expressions
�for At and Dt� and the definition of Laplacian matrix, we
have the following recursive relation between Lt and Lt−1:

Lt = Dt − At =�
Lt−1 + mI − I − I ¯ − I

− I I 0 ¯ 0

− I 0 I ¯ 0

] ] ] ]

− I 0 0 ¯ I
	 . �4�

Then, the characteristic polynomial of Lt is

FIG. 1. �Color online� Illustration of a deterministic uniform
recursive tree for the special case of m=2, showing the first several
steps of growth process.
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Pt�x� = det�xI − Lt� = det�
�x − m�I − Lt−1 I I ¯ I

I �x − 1�I 0 ¯ 0

I 0 �x − 1�I ¯ 0

] ] ] ]

I 0 0 ¯ �x − 1�I
	

= �det��x − 1�I��mdet�
�x − m�I − Lt−1 I I ¯ I

1

x − 1
I I 0 ¯ 0

1

x − 1
I 0 I ¯ 0

] ] ] ]

1

x − 1
I 0 0 ¯ I

	
= �det��x − 1�I��mdet�


x − m −
m

x − 1
�I − Lt−1 0 0 ¯ 0

1

x − 1
I I 0 ¯ 0

1

x − 1
I 0 I ¯ 0

] ] ] ]

1

x − 1
I 0 0 ¯ I

	 , �5�

where the elementary operations of matrix have been used.
According to the results in �26�, we have

Pt�x� = �det��x − 1�I��mdet�
x − m −
m

x − 1
�I − Lt−1 .

�6�

Thus, Pt�x� can be recast recursively as follows:

Pt�x� = �x − 1�2m�m + 1�t−1
Pt−1„��x�… , �7�

where ��x�=x−m− m
x−1 . This recursive relation given by Eq.

�7� is very important, from which we will determine the
complete Laplacian eigenvalues of Ut and their correspond-
ing eigenvectors. Notice that Pt−1�x� is a monic polynomial
of degree 2�m+1�t−1, then the exponent of m

x−1 in Pt−1(��x�)
is 2�m+1�t−1, and hence the exponent of factor x−1 in Pt�x�
is

2m�m + 1�t−1 − 2�m + 1�t−1 = 2�m − 1��m + 1�t−1. �8�

Consequently, 1 is an eigenvalue of Lt, and its multiplicity is
2�m−1��m+1�t−1.

Note that Ut has 2�m+1�t Laplacian eigenvalues. We rep-
resent these 2�m+1�t Laplacian eigenvalues as
�1

t ,�2
t , . . . ,�2�m + 1�t

t , respectively. For convenience, we pre-
sume �1

t ��2
t � ¯ ��2�m + 1�t

t , and denote by Et the set of

these Laplacian eigenvalues, i.e., Et= ��1
t ,�2

t , . . . ,�2�m + 1�t
t �.

All the Laplacian eigenvalues in set Et can be divided into
two parts. According to the above analysis, �=1 is a Laplac-
ian eigenvalue with multiplicity 2�m−1��m+1�t−1, which
gives a part of the eigenvalues of Lt. We denote by Et� the set
of Laplacian eigenvalues 1 of Ut, i.e.,

Et� = �1,1,1, . . . ,1,1

2�m−1��m + 1�t−1

� .

�9�

It should be noted that here we neglect the distinctness of
elements in the set. The remaining 4�m+1�t−1 Laplacian ei-
genvalues of Ut are determined by the equation Pt−1(��x�)
=0. Let the 4�m+1�t−1 eigenvalues be �̃1

t , �̃2
t , . . . , �̃4�m + 1�t−1

t ,

respectively. For convenience, we presume �̃1
t ��̃2

t � ¯

��̃4�m + 1�t−1
t and denote by Et

� the set of these eigenvalues,

i.e., Et
�= ��̃1

t , �̃2
t , . . . , �̃4�m + 1�t−1

t �. Therefore, the set of all La-
placian eigenvalues for Ut can be expressed as Et=Et��Et

�.
According to Eq. �7�, for an arbitrary element in Et−1, say

�i
t−1�Et−1, both solutions of x−m− m

x−1 =�i
t−1 are in Et

�. In
fact, equation x−m− m

x−1 =�i
t−1 is equivalent to

x2 − ��i
t−1 + m + 1�x + �i

t−1 = 0. �10�

We use notations �̃i
t and �̃i+2�m + 1�t−1

t to represent the two so-
lutions of Eq. �10�, since they provide a natural increasing
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order of the eigenvalues of Ut, which can be seen from the
argument below. Solving this quadratic equation, its roots are

obtained to be �̃i
t=r1��i

t−1� and �̃i+2�m + 1�t−1
t =r2��i

t−1�, where
the functions r1��� and r2��� satisfy

r1��� =
1

2
�� + m + 1 − ��� + m + 1�2 − 4�� , �11�

r2��� =
1

2
�� + m + 1 + ��� + m + 1�2 − 4�� . �12�

Substituting each Laplacian eigenvalue of Ut−1 into Eqs. �11�
and �12�, we can obtain the subset Et

� of Laplacian eigenval-
ues of Ut. Since E0= �0,2�, by recursively applying the func-
tions provided by Eqs. �11� and �12�, the Laplacian spectra of
Ut can be determined completely.

It is obvious that both r1��� and r2��� are monotonously
increasing functions and that they lie in intervals �0,1� and
�1,+��, respectively. On the other hand, since r1���−1
= 1

2 ��+m−1−���+m−1�2+4m��0, we have r1����1.
Similarly, we can show that r2����1. Thus for arbitrary
fixed ��, r1����1�r2���� holds for all �. Then we have the
following conclusion. If the set of Laplacian eigenvalues for
Ut−1 is Et−1= ��1

t−1 ,�2
t−1 , . . . ,�2�m + 1�t−1

t−1 �, then solving Eqs.
�11� and �12� one can obtain the subset Et

� of Laplacian ei-

genvalues for Ut to be Et
�= ��̃1

t , �̃2
t , . . . , �̃4�m + 1�t−1

t �, where �̃1
t

��̃2
t � ¯ ��̃2�m + 1�t−1

t
�1��̃2�m + 1�t−1+1

t
��̃2�m + 1�t−1+2

t
� ¯

��̃4�m + 1�t−1
t . Recall that Et� consists of 2�m−1��m+1�t−1 ele-

ments, all of which are 1, so we can easily get the set of
eigenvalue spectra for Ut to be Et=Et

��Et�.
From above arguments, it is easy to see that for the spe-

cial case of m=1, all the 2t+1 Laplacian eigenvalues of Ut are
fundamentally distinct, which is an interesting property and
has never �to the best of our knowledge� been previously
reported in other network models, thus may have some far-
reaching consequences. For other cases m�1, some eigen-
values �e.g., 1� are multiple, which is obviously different
from that of m=1 case.

It has been established that Laplacian eigenvalues have
connections with many contexts in the theory of networks.
For example, they are closely related to the number of span-
ning trees on complex networks �27�. It has been shown that
the number of spanning tress on a connected network G with
order N, Nst�G�, concerns with all its nonzero Laplacian ei-
genvalues �i �assuming �1=0 and �i�0 for i=2, . . . ,N�,
obeying the following expression �28�:

Nst�G� =
1

N
�
i=2

N

�i. �13�

Since Ut are trees for all parameter m, according to Eq. �13�,
the product of all nonzero Laplacian eigenvalues for Ut, de-
noted by 	t, should be equal to Nt, which can be confirmed
from the following argument. For t=0, by construction it is
obvious that 	0=N0=2; for t�1, according to Eq. �10�, we
can easily obtain the following recursive relation 	t= �m
+1�	t−1, which combining with the initial value 	0=2 leads

to 	t=2�m+1�t=Nt. This proves that our computation on the
Laplacian eigenvalues for Ut is right.

B. Eigenvectors

Similar to the eigenvalues, the eigenvectors of Lt follow
directly from those of Lt−1. Assume that � is an arbitrary
Laplacian eigenvalue of Ut, whose corresponding eigenvec-
tor is v�R2�m + 1�t

, where R2�m + 1�t
represents the

2�m+1�t-dimensional vector space. Then we can solve equa-
tion ��I−Lt�v=0 to find the eigenvector v. We distinguish
two cases: ��Et

� and ��Et�, which will be separately ad-
dressed in detail as follows.

For the first case ��Et
�, we can rewrite the equation

��I−Lt�v=0 as

�
�� − m�I − Lt−1 I I ¯ I

I �� − 1�I 0 ¯ 0

I 0 �� − 1�I ¯ 0

] ] ] ]

I 0 0 ¯ �� − 1�I
	

��
v1

v2

v3

]

vm+1

	 = 0, �14�

where vector vi �1� i�m+1� are components of v. Equa-
tion �14� results in the following equations:

��� − m�It−1 − Lt−1�v1 + v2 + ¯ + vm+1 = 0 , �15�

v1 + �� − 1�vi = 0 �2 � i � m + 1� . �16�

Resolving Eq. �16�, we find that

vi = −
1

� − 1
v1 �2 � i � m + 1� . �17�

Substituting Eq. �17� into Eq. �15� we have

�
� − m −
m

� − 1
�I − Lt−1v1 = 0, �18�

which indicates that v1 is the solution of Eq. �15� while vi
�2� i�m+1� are uniquely decided by v1 via Eq. �17�.

In Eq. �7�, it is clear that if � is an eigenvalue of Laplac-
ian matrix Lt, then f���=�−m− m

�−1 must be one eigenvalue

of Lt−1. �Recall that if �= �̃i
t�Et

�, then ���̃i
t�=�i

t−1 for i

�2�m+1�t−1 or ���̃i
t�=�i−2�m + 1�t−1 for i�2�m+1�t−1.� Thus,

Eq. �18� together with Eq. �7� shows that v1 is an eigenvector
of matrix Lt−1 corresponding to the eigenvalue �−m− m

�−1
determined by �, while
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v =�
v1

v2

v3

]

vm+1

	 =�
v1

−
1

� − 1
v1

−
1

� − 1
v1

]

−
1

� − 1
v1

	 �19�

is an eigenvector of Lt corresponding to the eigenvalue �.
Since for the initial graph U0, its Laplacian matrix L0 has

two eigenvalues 0 and 2 with respective eigenvectors �1,1��

and �1,−1��; by recursively applying the above process, we
can obtain all the eigenvectors corresponding to ��Et

�.
For the second case of ��Et�, where all �=1, the equa-

tion ��I−Lt�v=0 can be recast as

�
�1 − m�I − Lt−1 I I ¯ I

I 0 0 ¯ 0

I 0 0 ¯ 0

] ] ] ]

I 0 0 ¯ 0
	�

v1

v2

v3

]

vm+1

	 = 0, �20�

where vector vi �1� i�m+1� are components of v. Equa-
tion �20� leads to the following equations:

v1 = 0 , �21�

v2 + v3 + ¯ + vm+1 = 0 . �22�

In Eq. �21�, v1 is a zero vector, and we denote by vi,j the jth
component of the column vector vi. On the other hand, Eq.
�22� gives us the following equations:

�
v2,1 + v3,1 + ¯ + vm+1,1 = 0

v2,2 + v3,2 + ¯ + vm+1,2 = 0

] ] ] ] ] ]

v2,2�m + 1�t−1 + v3,2�m + 1�t−1 + ¯ + vm+1,2�m + 1�t−1 = 0
�

The set of all solutions to any of the above equations
consists of vectors that can be written as

�
v2,j

v3,j

v4,j

]

vm+1,j

	 = k1,j�
− 1

1

0

]

0
	 + k2,j�

− 1

0

1

]

0
	 + ¯ + km−1,j�

− 1

0

0

]

1
	 ,

�23�

where k1,j ,k2,j , . . . ,km−1,j are arbitrary real numbers. In Eq.
�23�, the solutions for all the vectors vi �2� i�m+1� can be
rewritten as

�
v2

�

v3
�

v4
�

]

vm+1
�
	 =�

− 1 − 1 ¯ − 1

1 0 ¯ 0

0 1 ¯ 0

] ] ]

0 0 ¯ 1
	

��
k1,1 k1,2 ¯ k1,2�m + 1�t−1

k2,1 k2,2 ¯ k2,2�m + 1�t−1

k3,1 k3,2 ¯ k3,2�m + 1�t−1

] ] ]

km−1,1 km−1,2 ¯ km−1,2�m + 1�t−1

	 ,

�24�

where ki,j �1� i�m−1;1� j�2�m+1�t−1� are arbitrary real
numbers. According to Eq. �24�, we can obtain the eigenvec-
tor v corresponding to the eigenvalue 1. Moreover, it is easy
to see that the dimension of the eigenspace of matrix Lt
associated with eigenvalue 1 is 2�m−1��m+1�t−1.

In this way, all eigenvalues and their corresponding eigen-
vectors of Ut have been completely determined in a recursive
way.

IV. CONCLUSIONS

In this paper, we have investigated the Laplacian eigen-
values and their corresponding eigenvectors of a family of
deterministically growing treelike networks that exhibit
small-world behavior. Making use of the methods of linear
algebra and graph theory, we have fully characterized the
Laplacian eigenvalues and eigenvectors of the networks, all
of which are recursively determined from those for the initial
network. Interestingly, we showed that for a particular case
�m=1� of the networks under consideration, all its Laplacian
eigenvalues are disparate. We expect our results to be inter-
esting in some fields of networks, such as random and quan-
tum walks on networks, the computation of the resistance
between two arbitrary nodes in a resistor network, the dy-
namics of coupled oscillators on networks, and so on. We
also expect that the computing methods of eigenvalues and
eigenvectors used here might be extended to other types de-
terministic networks, e.g., deterministic small-world net-
works �29,30� and deterministic scale-free networks �31–36�.
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